299 research outputs found

    Dynamic modelling, validation and analysis of coal-fired subcritical power plant

    Get PDF
    Coal-fired power plants are the main source of global electricity. As environmental regulations tighten, there is need to improve the design, operation and control of existing or new built coal-fired power plants. Modelling and simulation is identified as an economic, safe and reliable approach to reach this objective. In this study, a detailed dynamic model of a 500 MWe coal-fired subcritical power plant was developed using gPROMS based on first principles. Model validations were performed against actual plant measurements and the relative error was less than 5%. The model is able to predict plant performance reasonably from 70% load level to full load. Our analysis showed that implementing load changes through ramping introduces less process disturbances than step change. The model can be useful for providing operator training and for process troubleshooting among others

    Optimal operation of MEA-based post-combustion carbon capture for natural gas combined cycle power plants under different market conditions

    Get PDF
    Carbon capture for fossil fuel power generation attracts an increasing attention in order to address the significant challenge of global climate change. This study aims to explore the optimal operation under different market conditions for an assumed existing natural gas combined cycle (NGCC) power plant integrated with MEA-based post-combustion carbon capture (PCC) process. The steady state process models for NGCC power plant, PCC process and CO₂ compression train were developed in Aspen Plus® to give accurate prediction of process performance. Levelised cost of electricity (LCOE) is formulated as the objective function in optimization studies. Economic evaluation was carried out for the base case of the integrated system including CO₂ transport and storage (T&S). The optimal operations were investigated for the carbon capture level under different carbon price, fuel price and CO₂ T&S price. The study shows that carbon price needs to be over €100/ton CO₂ to justify the total cost of carbon capture from the NGCC power plant and needs to be €120/ton CO₂ to drive carbon capture level at 90%. Higher fuel price and CO₂ T&S price would cause a higher operating cost of running carbon capture process thus a higher carbon price is needed if targeted carbon capture level is to be maintained

    Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines

    Get PDF
    In this paper, the thermodynamic advantage of integrating liquid air power generation (LAPG) process and binary cycle waste heat recovery technology to a standalone pressurized oxy-coal combustion supercritical steam power generation cycle is investigated through modeling and simulation using Aspen Plus® simulation software version 8.4. The study shows that the integration of LAPG process and the use of binary cycle heat engine which convert waste heat from compressor exhaust to electricity, in a standalone pressurized oxy-coal combustion supercritical steam power generation cycle improves the thermodynamic efficiency of the pressurized oxy-coal process. The analysis indicates that such integration can give about 12–15% increase in thermodynamic efficiency when compared with a standalone pressurized oxy-coal process with or without CO2 capture. It was also found that in a pressurized oxy-coal process, it is better to pump the liquid oxygen from the cryogenic ASU to a very high pressure prior to vapourization in the cryogenic ASU main heat exchanger and subsequently expand the gaseous oxygen to the required combustor pressure than either compressing the atmospheric gaseous oxygen produced from the cryogenic ASU directly to the combustor pressure or pumping the liquid oxygen to the combustor pressure prior to vapourization in the cryogenic ASU main heat exchanger. The power generated from the compressor heat in the flue gas purification, carbon capture and compression unit using binary cycle heat engine was also found to offset about 65% of the power consumed in the flue gas cleaning and compression process. The work presented here shows that there is a synergistic and thermodynamic advantage of utilizing the nitrogen-rich stream from the cryogenic ASU of an oxy-fuel power generation process for power generation instead of discarding it as a waste stream

    Neural network approach for predicting drum pressure and level in coal-fired subcritical power plant

    Get PDF
    There is increasing need for tighter controls of coal-fired plants due to more stringent regulations and addition of more renewable sources in the electricity grid. Achieving this will require better process knowledge which can be facilitated through the use of plant models. Drum-boilers, a key component of coal-fired subcritical power plants, have complicated characteristics and require highly complex routines for the dynamic characteristics to be accurately modelled. Development of such routines is laborious and due to computational requirements they are often unfit for control purposes. On the other hand, simpler lumped and semi empirical models may not represent the process well. As a result, data-driven approach based on neural networks is chosen in this study. Models derived with this approach incorporate all the complex underlying physics and performs very well so long as it is used within the range of conditions on which it was developed. The model can be used for studying plant dynamics and design of controllers. Dynamic model of the drum-boiler was developed in this study using NARX neural networks. The model predictions showed good agreement with actual outputs of the drum-boiler (drum pressure and water level)

    Case study on COâ‚‚ transport pipeline network design for Humber region in the UK

    Get PDF
    Reliable, safe and economic COâ‚‚ transport from COâ‚‚ capture points to long term storage/enhanced oil recovery (EOR) sites is critical for commercial deployment of carbon capture and storage (CCS) technology. Pipeline transportation of COâ‚‚ is considered most feasible. However, in CCS applications there is concern about associated impurities and huge volumes of high pressure COâ‚‚ transported over distances likely to be densely populated areas. On this basis, there is limited experience for design and economic assessment of COâ‚‚ pipeline. The Humber region in the UK is a likely site for building COâ‚‚ pipelines in the future due to large COâ‚‚ emissions in the region and its close access to depleted gas fields and saline aquifers beneath the North Sea. In this paper, various issues to be considered in COâ‚‚ pipeline design for CCS applications are discussed. Also, different techno-economic correlations for COâ‚‚ pipelines are assessed using the Humber region as case study. Levelized cost of COâ‚‚ pipelines calculated for the region range from 0.14 to 0.75 GBP per tonne of COâ‚‚. This is a preliminary study and is useful for obtaining quick techno-economic assessment of COâ‚‚ pipelines

    Modelling and simulation of intensified absorber for post-combustion COâ‚‚ capture using different mass transfer correlations

    Get PDF
    This paper studied mass transfer in rotating packed bed (RPB) which has the potential to significantly reduce capital and operating costs in post-combustion CO₂capture. To model intensified absorber, mass transfer correlations were implemented in visual FORTRAN and then were dynamically linked with Aspen Plus® rate-based model. Therefore, this represents a newly developed model for intensified absorber using RPB. Two sets of mass transfer correlations were studied and compared through model validations. The second set of correlations performed better at the MEA concentrations tested as compared with the first set of correlations. For insights into the design and operation of intensified absorber, process analysis was carried out, which indicates: (a) With fixed RPB equipment size and fixed Lean MEA flow rate, CO₂ capture level decreases with increase in flue gas flow rate; (b) Higher lean MEA inlet temperature leads to higher CO₂ capture level. (c) At higher flue gas temperature (from 30 °C to 80 °C), the CO₂ capture level of the intensified absorber can be maintained. Compared with conventional absorber using packed columns, the insights obtained from this study are (1) Intensified absorber using rotating packed bed (RPB) improves mass transfer significantly. (2) Cooling duty cost can be saved since higher lean MEA temperature and/or higher flue gas temperature shows little or no effect on the performance of the RPB

    Biodiesel from microalgae : the use of multi-criteria decision analysis for strain selection

    Get PDF
    Microalgae strain selection is a vital step in the production of biodiesel from microalgae. In this study, Multi-Criteria Decision Analysis (MCDA) methodologies are adopted to resolve this problem. The aim of this study is to identify the best microalgae strain for viable biodiesel production. The microalgae strains considered here are Heynigia sp., Scenedesmus sp., Niracticinium sp., Chlorella vulgaris, Chlorella sorokiniana and Auxenochlorella protothecoides. The five MCDA methods used to evaluate different strains of microalgae are Analytic Hierarchy Process (AHP), Weighted Sum Method (WSM), Weighted Product Method (WPM), Discrete Compromise Programming (DCP) and Technique for the Order of Preference to the Ideal Solution (TOPSIS). Pairwise comparison matrices are used to determine the weights of the evaluation criteria and it is observed that the most important evaluation criteria are lipid content and growth rate. From the results, Scenedesmus sp. is selected as the best microalgae strain among the six alternatives due to its high lipid content and relatively fast growth rate. The AHP is the most comprehensive of the five MCDA methods because it considers the importance of each criterion and inconsistencies in the rankings are verified. The implementation of the MCDA methods and the results from this study provide an idea of how MCDA can be applied in microalgae strain selection

    Simplification of detailed rate-based model of post-combustion COâ‚‚ capture for full chain CCS integration studies

    Get PDF
    As post-combustion COâ‚‚ capture (PCC) technology nears commercialisation, it has become necessary for the full carbon capture and storage (CCS) chain to be studied for better understanding of its dynamic characteristics. Model-based approach is one option for economically and safely reaching this objective. However, there is need to ensure that such models are reasonably simple to avoid the requirement for high computational time when carrying out such study. In this paper, a simplification approach for a detailed rate-based model of post-combustion COâ‚‚ capture with solvents (rate-based mass transfer and reactions assumed to be at equilibrium) is presented. The simplified model can be used in model-based control and/or full chain CCS simulation studies. With this approach, we demonstrated significant reduction in CPU time (up to 60%) with reasonable model accuracy retained in comparison with the detailed model

    Steady state simulation and exergy analysis of supercritical coal-fired power plant with COâ‚‚ capture

    Get PDF
    Integrating a power plant with COâ‚‚ capture incurs serious efficiency and energy penalty due to use of energy for solvent regeneration in the capture process. Reducing the exergy destruction and losses associated with the power plant systems can improve the rational efficiency of the system and thereby reducing energy penalties. This paper presents steady state simulation and exergy analysis of supercritical coal-fired power plant (SCPP) integrated with post-combustion COâ‚‚ capture (PCC). The simulation was validated by comparing the results with a greenfield design case study based on a 550 MWe SCPP unit. The analyses show that the once-through boiler exhibits the highest exergy destruction but also has a limited influence on fuel-saving potentials of the system. The turbine subsystems show lower exergy destruction compared to the boiler subsystem but more significance in fuel-saving potentials of the system. Four cases of the integrated SCPP-CO2 capture configuration was considered for reducing thermodynamic irreversibilities in the system by reducing the driving forces responsible for the COâ‚‚ capture process: conventional process, absorber intercooling (AIC), split-flow (SF), and a combination of absorber intercooling and split-flow (AIC + SF). The AIC + SF configuration shows the most significant reduction in exergy destruction when compared to the SCPP system with conventional COâ‚‚ capture. This study shows that improvement in turbine performance design and the driving forces responsible for COâ‚‚ capture (without compromising cost) can help improve the rational efficiency of the integrated system
    • …
    corecore